

US009197171B2

(12) United States Patent

Kinyua et al.

(54) MULTI-STAGE AMPLIFIER WITH PULSE WIDTH MODULATION (PWM) NOISE SHAPING

(71) Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.,

Hsin-Chu (TW)

(72) Inventors: Martin Kinyua, Cedar Park, TX (US);

Eric Soenen, Austin, TX (US); Ruopeng

Wang, Shanghai (CN)

(73) Assignee: Taiwan Semiconductor Manufacturing

Co., Ltd., Hsin-Chu (TW)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/698,908

(22) Filed: Apr. 29, 2015

(65) **Prior Publication Data**

US 2015/0249436 A1 Sep. 3, 2015

Related U.S. Application Data

- (63) Continuation of application No. 13/446,047, filed on Apr. 13, 2012, now Pat. No. 9,048,791.
- (51) Int. Cl.

 #03F 3/38 (2006.01)

 #03F 3/217 (2006.01)

 #03F 1/02 (2006.01)

 #03F 1/26 (2006.01)
- (52) U.S. CI. CPC *H03F 3/217* (2013.01); *H03F 1/0205* (2013.01); *H03F 1/26* (2013.01)

(10) **Patent No.:** US 9,

(45) **Date of Patent:**

US 9,197,171 B2

Nov. 24, 2015

58) Field of Classification Search

USPC	330/10, 251, 207 A
IPC	H03F 3/38
See application file for complete	search history

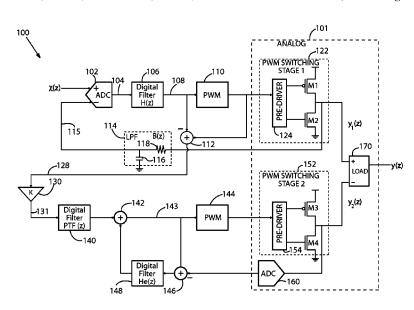
(56) References Cited

U.S. PATENT DOCUMENTS

6,518,838 B1 2/2003 Risbo 7,800,444 B2* 9/2010 Tsukamoto 7,990,215 B2 8/2011 Soenen et al. 2005/0024133 A1 2/2005 Midya et al. 2007/0024361 A1* 2/2007 Krishnan et al. 2007/0109165 A1* 5/2007 Midya et al 2008/0258831 A1 10/2008 Kunihiro et al. 11/2008 Kost et al. 2010/0109767 A1 5/2010 Midya et al.	330/123 341/144
2010/0109767 A1 5/2010 Midya et al.	

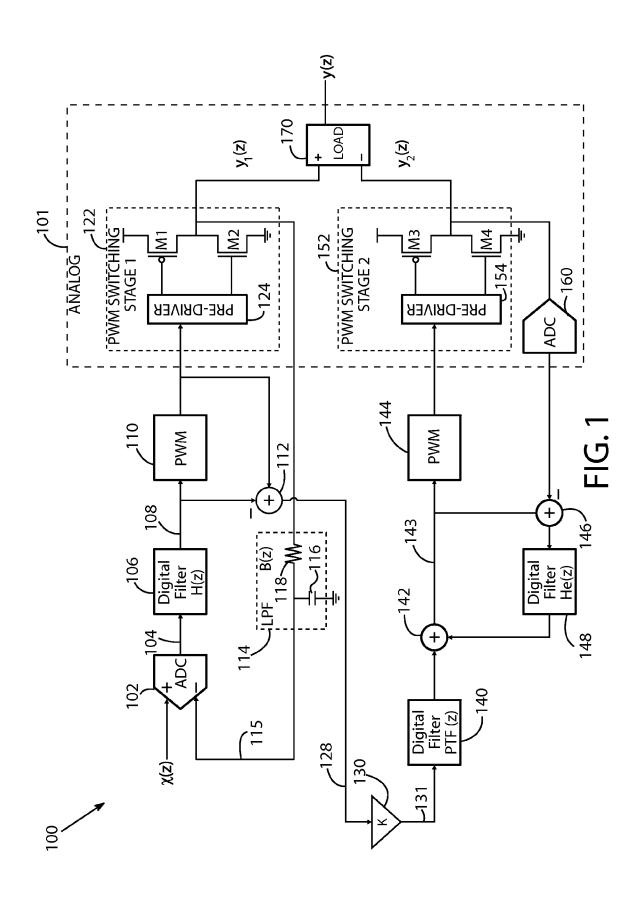
(Continued) OTHER PUBLICATIONS

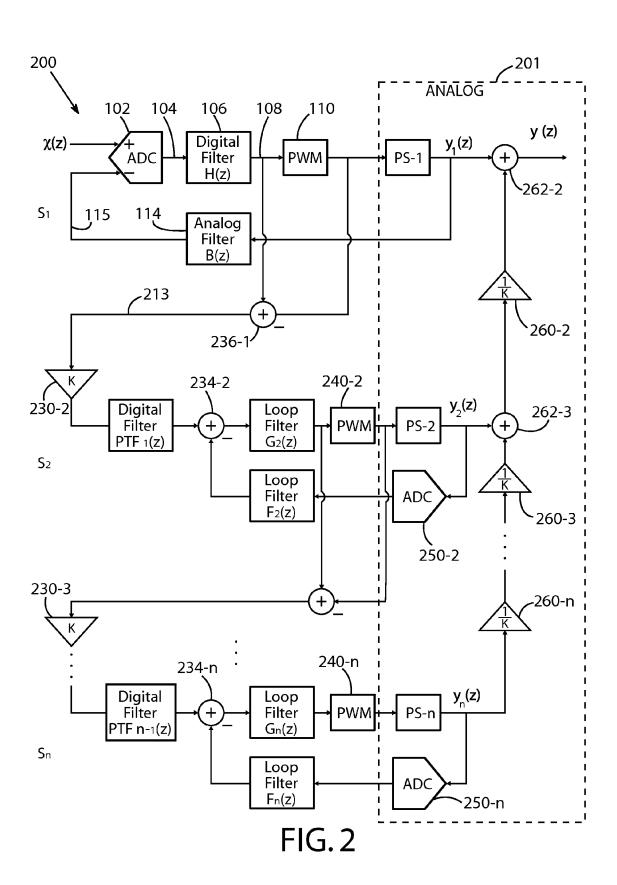
Matamura, A. et al, "Filterless Multi-Level Delta-Sigma Class-D Amplifier for Portable Applications", IEEE International Symposium on Circuits and Systems, ISCAS 2009, p. 1177-1180.


(Continued)

Primary Examiner — Patricia T Nguyen (74) Attorney, Agent, or Firm — Duane Morris LLP

(57) ABSTRACT


A pulse width modulation (PWM) amplifier includes a first amplifier stage, a second amplifier stage, and a gain module. The first amplifier stage is configured to amplify an analog input signal in the analog and digital domains using a first pulse width modulation (PWM) generator, to provide a first stage output for coupling to a load. The gain module is configured to amplify a quantization error of the first PWM generator by a predetermined gain. The second amplifier stage is configured to spectrally shape and attenuate the amplified quantization error of the first PWM generator using a second PWM generator, to provide a second stage output for coupling to the load.


20 Claims, 3 Drawing Sheets

US 9,197,171 B2Page 2

(56)	Referen	nces Cited	2014/0347128 A1* 11/2014 Crippa et al
	U.S. PATENT	DOCUMENTS	OTHER PUBLICATIONS
2010/0225391 2011/0316626 2012/0045076 2013/0088294 2013/0127531	A1* 12/2011 A1 2/2012 A1* 4/2013	Komatsu	Forejt, B., et al., "A 700 +- mW Class D Design with Direct Batery Hookup in a 90-nm Process", IEEE Journal of Solid-State Circuits, Sep. 2005, 40(9):1880-1887.
2013/0214856	A1* 8/2013	Wu 330/75	* cited by examiner

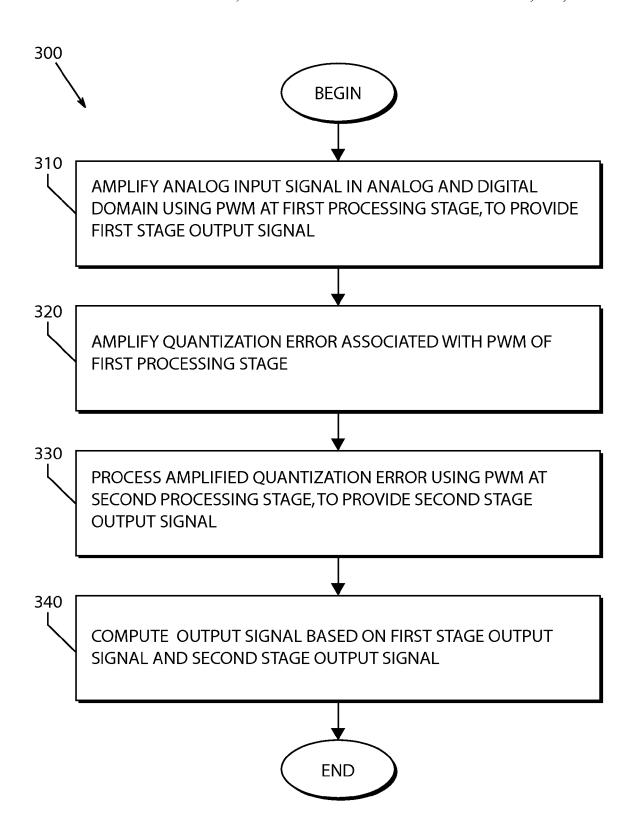


FIG. 3

MULTI-STAGE AMPLIFIER WITH PULSE WIDTH MODULATION (PWM) NOISE SHAPING

RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/446,047, entitled "MULTI-STAGE AMPLIFIER WITH PULSE WIDTH MODULATION (PWM) NOISE SHAPING," filed Apr. 13, 2012, the entirety of which is incorporated by reference herein.

BACKGROUND

Pulse-width-modulation (PWM) amplifiers, also known as ¹⁵ Class-D amplifiers, are a type of amplifier known for their relatively high efficiency in a variety of applications, e.g., amplification of an audio signal. Output stage power devices (typically metal oxide semiconductor field effect transistors, or MOSFETs) in a Class-D amplifier are operated as binary ²⁰ switches, i.e., they are either on or off.

In a Class D amplifier, ideally there are no switching losses, and the switches either have voltage across them but no current flow through them, or current flow through them but no voltage across them. Thus, ideally no heat is dissipated, and all of the power supplied to the Class D amplifier is delivered to the load, yielding theoretical power efficiency of 100%. In practice, non-ideal switching reduces the amplifier's efficiency.

BRIEF DESCRIPTION OF THE DRAWINGS

The following will be apparent from elements of the figures, which are provided for illustrative purposes and are not necessarily to scale.

FIG. 1 is a block diagram of a two-stage amplifier in accordance with some embodiments of the present disclosure.

FIG. 2 is a block diagram of an n-stage amplifier in accordance with some embodiments.

FIG. 3 is a flow diagram in accordance with some embodiments.

DETAILED DESCRIPTION

This description of certain exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. Terms concerning attachments, coupling and the like, such as "connected" and "interconnected," refer to a 50 relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Likewise, terms concerning electrical coupling and the like, such as "coupled," "connected" and "interconnected," refer to a relationship wherein structures communicate with one another either directly or indirectly through intervening structures unless expressly described otherwise.

FIG. 1 is a block diagram in accordance with some embodiments of the present disclosure. A two-stage Class-D amplifier 100 provides lower noise and lower total harmonic distortion (THD) than has been available with prior single-stage amplification techniques. The PWM quantization error from a first stage is extracted, gained up, filtered, and provided as 65 input to a second PWM stage that provides second-order PWM noise shaping. When the outputs of the first and second

2

stages are combined, the linearity of Class-D amplifier 100 is higher than for a single-stage amplifier.

The first amplifier stage is configured to amplify an analog input signal x(z) in the analog and digital domains using a digital pulse width modulation (PWM) generator 110 (referred to herein as PWM 110), to provide a first stage output $y_1(z)$ for coupling to a load 170. The notations "x(z)", " $y_1(z)$ ", and the like indicate signal representations in the z-transform domain. In the first stage, input audio signal x(z) is provided to a first input of a differential analog to digital converter (ADC) 102. A second input to ADC 102 is described further below. The resulting digital signal 104 is processed by a digital low pass filter (LPF) 106 having a transfer function H(z). In the discussion herein, filters are sometimes referred to by their transfer functions for notational convenience where such transfer functions are denoted uniquely. The signal 108 outputted by filter 106 is processed by PWM 110, which is a device that generates a binary series of pulses having a duty cycle proportional to the instantaneous value of signal 108. The PWM carrier frequency may be denoted f_c. The binary pulse series generated by PWM 110 is amplified at switching module 122. For example, a pre-driver circuit 124 may be coupled to gates of PMOS transistor M1 and NMOS transistor M2 that are configured in a single-ended, halfbridge switching configuration. In other embodiments, a differential H-bridge switching configuration may be used. Transistors M1 and M2 provide amplified analog signal $y_1(z)$. Signal y₁(z) is fed back to a passive analog low pass filter 114 having transfer function B(z). LPF 114 includes resistor 118 30 and capacitor 116. LPF 114 provides signal 115 to the second input of ADC 102.

The quantization error associated with PWM 110 is isolated by subtracting between the input and output of PWM 110 at module 112 (i.e., subtracting the input of PWM 110 from the output of PWM 110, or vice-versa). Module 112 may be an adder that applies a gain of -1 to one of its inputs. Thus, PWM quantization noise of PWM 110 is extracted in the digital domain. Although FIG. 1 shows the input to PWM 110 being subtracted from the output of PWM 110, the order of subtraction may be reversed, as one of ordinary skill in the art will understand. The PWM error signal 128 is passed to the second stage of amplifier 100 for second-order spectral shaping and diminution. Spectral shaping may allow PWM noise to be moved out of the audio band of interest, e.g., to a frequency band inaudible to the human ear.

PWM error 128 undergoes amplification by a factor of k at gain module 130. The second amplifier stage is configured to spectrally shape and attenuate the amplified quantization error of the PWM generator 110 using another PWM generator 144, to provide a second stage output for coupling to load 170. At the second stage, the output signal 131 of gain module 130 is filtered at digital filter 140, which may be a high pass filter having a transfer function denoted PTF(z) (PTF stands for "PWM transfer function"). For example, PTF(z) may satisfy PTF(z)=1(1+H(z)B(z)). After processing at adder 142, signal 143 is processed by PWM 144, which has a carrier frequency k times the carrier frequency of PWM 110 (i.e., the carrier frequency of PWM 144 is k*f_c). Adder 142 has first and second inputs. The first input is provided by filter 140. The second input is a feedback signal based on signal $y_2(z)$, which is an output of the second amplifier stage. As used herein, "*" denotes multiplication. Filter 148 spectrally shapes the quantization error of PWM 144. The resulting binary pulse series is amplified by switching at switching module 152, which includes pre-driver 154 and transistors M3 and M4 in a configuration similar to switching module 122. Switching module 152 provides amplified analog signal

 $y_2(z)$. Signals $y_1(z)$ and $y_2(z)$, which are intermediate output signals of the first and second stages, respectively, are passed to a differential load **170** (e.g., a loudspeaker), which generates an analog output signal y(z). Signal $y_2(z)$ is converted to digital at ADC **160**, and the result is subtracted at adder **146** 5 from the input **143** to PWM **144**. One of ordinary skill will understand that the order of subtraction may be reversed here. The output of adder **146** is filtered at digital filter **148**. Filter **148** may have a transfer function $H_e(z)=z^{-1}(2-z^{-1})$, with the following result for y(z):

$$\begin{array}{c} y(z) = H(z)x(z)/(1 + H(z)B(z)) + H(z)q(z)(1 - z^{-1})^2/(1 + H(z)) \\ B(z)) + p_2(z)(1 - z^{-1})^2/k, \end{array}$$

where q(z) is the quantization error of ADC 102 and $p_2(z)$ is the quantization error of PWM 144. The denominator "k" in 15 the third summand of the preceding equation corresponds to diminution of error associated with PWM 144 by a factor of k, and the term $(1-z^{-1})^2$ corresponds to spectral shaping of that PWM error.

The following example transfer functions for filters **106** and **114** may be used, with notation indicating representation in the Laplace transform domain: $H(s)=G_1*(s+z_1)/(s+p_1)$, and $B(s)=G_2/(s+p_2)$, where p_1 and p_2 are poles, and z_1 is a zero, of the respective filters, and G_1 and G_2 are positive real numbers (e.g., $G_1=1000$ and $G_2=0.5$) corresponding to DC 25 gains.

The use of a carrier frequency k*f_c for PWM 144 (rather than f_c as with PWM 110) is equivalent to digitally scaling down signal y₂(z) by a factor of k (i.e., gain scaling) but eliminates the need for an analog divider, reducing complexity and cost and increasing practicability of implementation. The factor k may be arbitrary, and there are k effective signal levels at the output y. In some embodiments, k is an integer power of two, which may simplify system design and processing. Prior amplification methods cannot provide an arbi- 35 trary number of effective levels at the output. For example, a 2-level quantizer is described at Forejt et al., "A 700+-mW Class D Design with Direct Battery Hookup in a 90-nm Process," JSSC, September 2005, and a 3-level quantizer is described at Matamura et al., "Filterless Multi-Level Delta- 40 Sigma Class-D Amplifier for Portable Applications," 2009 ISCAS, but embodiments of the present disclosure enable any number of quantization levels.

When the outputs $y_1(z)$ and $y_2(z)$ of the first and second stages, respectively, of amplifier 100 are combined, the linearity of the amplifier is improved compared to a single-stage amplifier. Conventional methods employing single PWM stages are limited in achievable resolution. Thus, the topology of FIG. 1 provides higher effective resolution than can be achieved by an equivalent single-stage architecture. Feedback is included at the first and second stages to correct for analog errors, e.g., power supply noise.

Block 101 includes analog circuit components. Digital circuit components external to block 101, e.g., digital filters 140 and 148, are easier to design and implement than the high 55 precision analog components that are required by traditional amplification methods.

The principles underlying the two-stage amplifier 100 in FIG. 1 may be extended to additional stages. FIG. 2 is a block diagram of an n-stage amplifier 200 in accordance with some 60 embodiments, where n may be any integer greater than one. The first stage S_1 of amplifier 200 is similar to the first stage of amplifier 100. PWM switching module PS-1 may be the same as switching module 122. Adder 236-1 has a gain of -1 applied to a different input than does adder 112, in effect 65 reversing the order of the subtraction implemented at that adder. The reason for this change relative to adder 112 is that

4

in amplifier 100 of FIG. 1, combination of the outputs from the first and second stages is effected by a subtraction at load 170; in contrast, combination of the outputs from respective stages in amplifier 200 is effected by additive (not subtractive) units, as described further below.

The error signal 213 is gained up by a factor of k at interstage gain module 230-2 and then passed to the second stage S₂. The second stage S₂ may be termed a "successor stage" relative to the first stage S₁, and the first stage may be termed a "predecessor stage" relative to the second stage. The second stage includes digital filter PTF₁(z), PWM 240-2, PWM switching module PS-2, and ADC 250-2 that are similar to corresponding components in the second stage of amplifier 100. Filter $PTF_1(z)$ and similar filters PTF(z) at subsequent stages may be referred to as pre-loop filters because they precede a control loop at each stage as shown in FIG. 2. These pre-loop filters may be highpass filters. The output of filter $PTF_1(z)$ is combined with the output of a digital loop filter $F_2(z)$ as shown at combination module 234-2, with the resulting output processed at loop filter $G_2(z)$. The combination module at each stage S, after the first stage is configured to compute an addition or subtraction between the inputs to the combination module; subtraction is shown in the example of FIG. 2. An input of the PWM generator of each stage S_i after the first stage is based on an output of the respective combination module. In FIG. 1, the functionality of a loop filter such as loop filter $G_2(z)$ is effectively merged into filter $H_a(z)$. The output signal $y_1(z)$ from the first stage, which may be referred to as a first stage output signal or a stage output signal of stage S₁, is passed to an inter-stage adder 262-2; the output signal y₂(z) from the second stage, which may be referred to as a second stage output signal or a stage output signal of stage S_2) is passed to an inter-stage adder 262-3; etc.

Similar components as are provided at the second stage may be provided at subsequent stages as shown in FIG. 2, with reference numerals or subscripts that indicate the respective stage. Analog inter-stage attenuation modules 260-2, 260-3, ..., 260-n may be provided, each providing attenuation by k (i.e., gain by a factor of 1/k), in which case the carrier frequency for each of PWM 240-2, ..., 240-n may be the same as the carrier frequency f_c for PWM 110. Thus, interstage attenuation modules, when provided, compensate for gain provided by inter-stage gain modules. Alternatively, using a carrier frequency of k^*f_c for the PWM units at the second through n^{th} stages eliminates the need for attenuation modules 260-2, ..., 260-n.

Block 201 includes analog circuit components. Digital circuit components in the second through nth stages are easy to design and implement and are inexpensive. In contrast to feedback control loop designs of prior amplifiers that have difficult stability issues, digital loops in various embodiments of the present disclosure are easily compensated.

The spectral shaping and PWM quantization error attenuation properties of amplifier 200 may be understood as follows. The output signal y(z) satisfies the following equation:

$$y(z)=y_1(z)+y_2(z)/k+...+y_n(z)/k^n$$
 (1)

The signal
$$y_1(z)$$
 may be expressed as: $y_1(z) = H(z)x(z)/(1+H(z)B(z)) + H(z)q(z)(1-z^{-1})/(1+H(z)B(z)) + p_1$ (2)/(1+H(z)B(z)), (2)

where q(z) is quantization error of ADC **102** and $p_1(z)$ is quantization error of PWM **110**.

The signal $y_2(z)$ may be expressed as:

$$y_2(z) = -k p_1(z) PTF_1(z) STF_2(z) + p_2(z) PTF_2(z),$$
 (3)

where $PTF_1(z)=1/(1+H(z)B(z))$, $STF_2(z)=G_2(z)/(1+F_2(z))$ $G_2(z)$), $PTF_2(z)=1/(1+F_2(z)G_2(z))$, and $p_2(z)$ is quantization error of PWM 240-2.

The signal $y_n(z)$ may be expressed as:

$$y_n(z) = -k * p_{n-1}(z) * PTF_{n-1}(z) * STF_n(z) + p_n(z) * PTF_n(z),$$
 (4)

where $PTF_{n-1}(z)=1/(1+F_{n-1}(z)G_{n-1}(z))$, $STF_n(z)=G_n(z)/(1+F_{n-1}(z)G_{n-1}(z))$ $(1+F_n(z)G_n(z))$, $PTF_n(z)=1/(1+F_n(z)G_n(z))$, $p_{n-1}(z)$ is quantization error of PWM 240-(n-1), and $p_n(z)$ is quantization error of PWM 240-n.

Substituting equations (2), (3), and (4) into equation (1) yields:
$$y(z)=H(z)x(z)/(1+H(z)B(z))+H(z)q(z)$$
 $(1-z^{-1})^n/(1+H(z)B(z))+p_n(z)*PTF_n(z)*PTF_n(z)/k^{n-1}$ (5)

The transfer function $PTF_n(z)$ may correspond to a high 15 pass filter that spectrally shapes the PWM quantization error $p_n(z)$ in the last term of equation (5). Such spectral shaping may move that error to a high frequency out of the audio band of interest. Also, as seen in the denominator of the last term of equation (5), the inter-stage gain (k) or the number of stages 20 (n) may be increased to suppress the PWM quantization error.

Any number of stages greater than one may be used. With sufficient stages, PWM quantization noise can be completely suppressed below the thermal noise floor. The use of n stages with a scale factor of k results in k^{n-1} effective levels at the 25 output. In effect, the performance of the topology of various embodiments is equivalent to employing multi-level PWM conversion.

Various embodiments do not require an external LC (inductor-capacitor) filter, unlike prior amplifiers. An LC filter is 30 typically used in conventional single-stage amplifiers following a switching component to remove unwanted high-frequency components. The multi-stage filtering of embodiments of the present disclosure renders such an LC filter unnecessary, because there is a reduction in unwanted signal 35 energy and therefore the amount of filtering needed for signal reconstruction is reduced. Also, complex analog integrators of some prior amplifier systems are not needed in various embodiments of the present disclosure. Elimination of these components results in die area reduction.

Various embodiments using n-stage filtering with interstage gain of k provide equivalent PWM noise suppression as a single composite PWM noise stage having k*n levels, while using fewer PWM unit elements. To achieve a PWM resolution of M (e.g., M=16) levels, a traditional (single-stage) 45 amplifier requires M PWM unit elements; in contrast, embodiments of the present disclosure have only log₂(M) PWM unit elements for the same PWM resolution. The reduced PWM power stage component count results in reduced area and reduced power consumption.

FIG. 3 is a flow diagram of a process 300 in accordance with some embodiments. After process 300 begins, an analog input signal is amplified (310) in the analog and digital domains using pulse width modulation (PWM) at a first processing stage, to provide a first stage output signal. A quan- 55 amplifier stage is a quantization error of the first PWM gentization error associated with the PWM of the first processing stage is amplified (320). The amplified quantization error is processed (330) using PWM at a second processing stage, to provide a second stage output signal. An output signal is computed (340) based on the first stage output signal and the 60 second stage output signal. The output signal is an amplification of the analog input signal.

In some embodiments, a pulse width modulation (PWM) amplifier includes a first amplifier stage, a second amplifier stage, and a gain module. The first amplifier stage is configured to amplify an analog input signal in the analog and digital domains using a first pulse width modulation (PWM)

6

generator, to provide a first stage output for coupling to a load. The gain module is configured to amplify a quantization error of the first PWM generator by a predetermined gain. The second amplifier stage is configured to spectrally shape and attenuate the amplified quantization error of the first PWM generator using a second PWM generator, to provide a second stage output for coupling to the load.

In some embodiments, a pulse width modulation (PWM) amplifier includes multiple amplifier stages, including a first stage S_1 and a last stage S_N , where N is an integer greater than 1. The PWM amplifier also includes an inter-stage gain module between each pair of adjacent stages S_i and S_{i+1} . Each amplifier stage includes a pulse width modulation (PWM) generator. The first stage is configured to amplify an analog input signal in the analog and digital domains using the PWM generator of the first stage. A quantization error of the PWM generator of each stage S, before the last stage is provided to a successor stage S_{i+1} succeeding stage S_i . Each inter-stage gain module between a pair of adjacent stages S_i and S_{i+1} is configured to amplify the quantization error of the PWM generator of stage S, by a predetermined gain.

In some embodiments, an analog input signal is amplified in the analog and digital domains using pulse width modulation (PWM) at a first processing stage, to provide a first stage output signal. A quantization error associated with the PWM of the first processing stage is amplified. The amplified quantization error is processed using PWM at a second processing stage, to provide a second stage output signal. An output signal is computed based on the first stage output signal and the second stage output signal. The output signal is an amplification of the analog input signal.

Although examples are illustrated and described herein, embodiments are nevertheless not limited to the details shown, since various modifications and structural changes may be made therein by those of ordinary skill within the scope and range of equivalents of the claims.

What is claimed is:

40

50

- 1. A device comprising:
- a first amplifier stage configured to amplify an analog input signal to provide a first output, the first amplifier stage including a first pulse width modulation (PWM) genera-
- a second amplifier stage having an input based on a signal from the first amplifier stage, the second amplifier stage including a second PWM generator, the second amplifier stage providing a second output; and
- a signal combination module configured to combine the first and second outputs to provide an output of the device.
- 2. The device of claim 1, further comprising a gain module configured to amplify a signal from the first amplifier stage.
- 3. The device of claim 2, wherein the signal from the first erator.
- 4. The device of claim 2, wherein the gain module is configured to amplify the signal from the first amplifier stage by a gain K, and the output of the device has K signal levels.
- 5. The device of claim 4, wherein K is an integer greater
 - **6**. A device comprising:
 - a first amplifier stage configured to amplify an analog input signal to provide a first output, the first amplifier stage including a first digital filter and a first analog amplifier;

a second amplifier stage having an input based on a signal from the first amplifier stage, the second amplifier stage

- including a second digital filter and a second analog amplifier, the second amplifier stage providing a second output; and
- a signal combination module configured to generate an output of the device based on the first and second outputs.
- 7. The device of claim 6, wherein the signal from the first amplifier stage is a quantization error signal.
- 8. The device of claim 7, further comprising a gain module configured to amplify the quantization error signal.
- 9. The device of claim 8, wherein the gain module is configured to amplify the quantization error signal by a gain K, and the output of the device has K signal levels.
- 10. The device of claim 9, wherein K is an integer greater than 3.
- 11. The device of claim 6, wherein the first amplifier stage ¹⁵ further includes a first pulse width modulation (PWM) generator, and the second amplifier stage further includes a second PWM generator.
- 12. The device of claim 11, wherein the first PWM generator is coupled to an output of the first digital filter, and the first 20 analog amplifier is coupled to an output of the first PWM generator.
- **13**. The device of claim **11**, wherein the second PWM generator is based on an output of the second digital filter, and the second analog amplifier is coupled to an output of the 25 second PWM generator.
 - 14. A device comprising:
 - a first amplifier stage configured to amplify an analog input signal to provide a first stage output, the first amplifier stage including a first pulse width modulation (PWM) generator; and

8

- a second amplifier stage configured to spectrally shape and attenuate an amplified quantization error of the first PWM generator using a second PWM generator, to provide a second stage output;
- wherein an output of the device based on the first and second stage outputs has K signal levels, K being an integer greater than three.
- 15. The device of claim 14, further comprising a load coupled to the first stage output and second stage output.
 - 16. The device of claim 14, wherein the first amplifier stage further includes a first digital filter and a first analog amplifier, and the second amplifier stage further includes a second digital filter and a second analog amplifier.
 - 17. The device of claim 16, wherein the first PWM generator is coupled to an output of the first digital filter, and the first analog amplifier is coupled to an output of the first PWM generator.
 - 18. The device of claim 16, wherein the second PWM generator is based on an output of the second digital filter, and the second analog amplifier is coupled to an output of the second PWM generator.
 - 19. The device of claim 14, further comprising a gain module configured to amplify a quantization error of the first PWM generator to provide the amplified quantization error.
 - 20. The device of claim 19, wherein the gain module is configured to amplify the quantization error signal by a factor of K.

* * * * *